

# PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation

#### **COLING 2022**

Sedrick Scott Keh, Kevin Lu, Varun Gangal\*, Steven Y. Feng\*, Harsh Jhamtani, Malihe Alikhani, Eduard Hovy

# How do we generate coherent, diverse, and interesting personifications?

#### **Important for:**

- Dialogue systems
- Al-assisted creative writing

#### **Challenges:**

- No explicit structure (unlike similes which use 'like' or 'as')
- Not as loosely defined as metaphors
- Require model to understand the concept of <u>animacy</u>

Generated Output (Personified)

The freshly sliced pineapple serenaded my taste buds.

Seq2Seq Personification Model

The freshly sliced pineapple tasted delicious.

Test Input (Literal)

#### **Task**

Given a literal sentence, convert the sentence to a sentence containing a personification.

# PersonifCorp Dataset

- 511 diverse personifications
- Gathered from various sources:
  - \*CL Prior Art (e.g. Deja Image Captions dataset (Chen et al., 2015))
  - Kaggle/SemEval tasks (e.g. <a href="http://www.kaggle.com/datasets/varchitalalwani/figure-of-speech">http://www.kaggle.com/datasets/varchitalalwani/figure-of-speech</a>)
- Test set: Human-annotated list of (literal, personification) pairs

#### In order to train such a model, we will need personification+literal training pairs.

| Original Personification                                      | Result After De-Personifying                              |
|---------------------------------------------------------------|-----------------------------------------------------------|
| How far that little candle throws its beams!                  | How far that little candle can spread its beams!          |
| A book is a fragile creature, it suffers the wear of time, it | A book is fragile, it can break from the wear of time, it |
| fears rodents, the elements and clumsy hands.                 | can be eaten by rodents, the elements and clumsy hands.   |
| The camera loves her since she is so pretty.                  | The camera is always on her since she is so pretty.       |
| Any trust I had for him walked right out the door.            | Any trust I had for him had gone right out the door.      |
| The full moon peeped through partial clouds.                  | The full moon was visible through partial clouds.         |
| Opportunity was knocking at her door.                         | Opportunity was knocking at her door.                     |
| The killing moon will come too soon.                          | The killing moon will be here too soon.                   |

Table 1: Example outputs of the **PINEAPPLE** de-personification pipeline. The ATTRIBUTES are highlighted in blue for both the original personifications, as well as the de-personified output sentences. The last two rows contain negative examples where the process does not successfully de-personify the input.

# Given our *PersonifCorp* dataset of personifications, how do we "de-personify" a sentence?

We "de-personify" the personifications using the pipeline below.



#### 1. TOPIC-ATTRIBUTE Extraction

**TOPIC** = a noun phrase that acts as a logical subject

**ATTRIBUTE** = the distinctly animate action or characteristic that is being ascribed to the **TOPIC** 

Dependency parse trees + iterative merging algorithm to determine the **TOPICs** and **ATTRIBUTEs** of a given sentence.

| ATTRIBUTE Type | Example                               |  |  |
|----------------|---------------------------------------|--|--|
| Noun           | The planet earth is our mother.       |  |  |
| Verb           | My alarm clock yells at me to         |  |  |
|                | get out of bed every morning.         |  |  |
| Adjective      | Justice is blind and, at times, deaf. |  |  |

Figure 2: Examples of different types of personification ATTRIBUTES (TOPICS in red and ATTRIBUTES in blue).

#### 2. Candidate Generation

She did not realize that opportunity was knocking on her door.

(She, did not realize) – animate (we ignore)
(opportunity, knocking on her door) – inanimate

She did not realize that opportunity was <mask>. Top k=10 candidates:

- "knocking at her door"
- "present"
- "lost"
- ...
- "going to arrive"



Use COMET's (Bosselut et al., 2019) ConceptNet relations (Speer et al., 2017) as a proxy for animacy.

- IsA(x, "person")

Use pre-trained BART to generate k=10 candidates for each inanimate TOPIC.

#### 3. Candidate Selection

Given k=10 replacement candidates, design a ranking system to select the most appropriate candidate:

- 1. Animacy  $A_{human,ATT}$   $A_{TOPIC,ATT}$  where  $A_{(X,ATT)}$  is the COMET CapableOf score between X and the ATTRIBUTE
- 2. Fluency use BART's generation scores (sum of individual token logits)
- Meaning Preservation BERTScore between original sentence and de-personified candidate sentence

$$S_i = \alpha \cdot (-\log(S_{anim.})) + \beta \cdot S_{flue.} + \gamma \cdot S_{mean.}$$

Select the candidate with the highest S<sub>i</sub> score.

# Training + Generation

- After de-personifying the dataset, we use the personification+literal pairs to train a seq2seq model with the literal sentences. as the input and personified sentences as outputs.
- Specifically, we use the BART model.



### **Experimental Setup**

#### **Models:**

- COMET: No training at all. Adapt our de-personification pipeline, but this time to personification generation. Use IsA(x,"person"), CapableOf(TOPIC, y), and CapableOf("person", y) to generate candidates + rank to select the best personifications.
- Baseline-BART: Similar to COMET, except use BART to generate candidates
- PINEAPPLE-BART: Our proposed model (seq2seq training with personification+literal training pairs)

#### **Evaluation metrics:**

- Automatic: BLEU, BERTScore, Fluency, Animacy
- Human (1 to 5 scale): Personificationhood, Appropriateness, Fluency, Interestingness, Meaning Preservation

# **Results (Automatic Metrics)**

- **BLEU** and **BERTScore** measure if outputs preserve meaning of original
- **Fluency** generation losses (log-perplexity) using GPT2
- Animacy  $-\mathcal{A}_{human, \mathrm{ATT}} \mathcal{A}_{\mathrm{TOPIC, ATT}}$  as previously defined

|                  | BLEU  |       | BERTScore |       |           |         |
|------------------|-------|-------|-----------|-------|-----------|---------|
|                  | Input | Gold  | Input     | Gold  | Fluency ↓ | Animacy |
| Human Annotation | 0.172 | 1.000 | 0.749     | 1.000 | 5.264     | 0.332   |
| COMET            | 0.127 | 0.128 | 0.655     | 0.569 | 6.366     | -2.028  |
| BL-BART          | 0.132 | 0.133 | 0.728     | 0.617 | 4.573     | 0.106   |
| PA-BART          | 0.153 | 0.160 | 0.748     | 0.636 | 5.460     | 0.679   |

Table 2: Average automatic evaluation results. The best-scoring method for each metric is highlighted in **bold**. Higher scores are better for all metrics except for fluency.

# **Results (Human Evaluation)**

Human annotators were asked to score each model's outputs on a scale of 1 to 5 along 5 dimensions, as shown below:

|                  | Personificationhood | Appropriateness | Fluency | Interestingness | Meaning Preservation |
|------------------|---------------------|-----------------|---------|-----------------|----------------------|
| Human Annotation | 3.763               | 4.175           | 4.138   | 3.667           | 3.913                |
| COMET            | 3.525               | 3.563           | 3.738   | 1.801           | 3.550                |
| BL-BART          | 3.500               | 3.938           | 4.188   | 2.006           | 3.750                |
| PA-BART          | 3.738               | 4.000           | 4.138   | 2.782           | 3.875                |

Table 3: Average human evaluation results. The best-scoring method for each metric is highlighted in **bold**.

# Results (Qualitative Analysis)

| Method        | Text                                                                |
|---------------|---------------------------------------------------------------------|
| Literal Input | You are at a business dinner with your boss when your phone rings   |
|               | out loud (ex.1)                                                     |
| Human Ref     | You are at a business dinner with your boss when your phone starts  |
|               | singing out loud                                                    |
| COMET         | You are at a business dinner with your boss when your phone beep    |
|               | out loud                                                            |
| BL-BART       | You are at a business dinner with your boss when your phone rings   |
|               | and you answer out loud                                             |
| PA-BART       | You are at a business dinner with your boss when your phone yells   |
|               | out loud                                                            |
|               | In most horror settings, silence is key. (ex.2)                     |
| Human Ref     | In most horror settings, silence is the protagonist.                |
| COMET         | In most horror settings, silence scary.                             |
| BL-BART       | In most horror settings, silence is preferred.                      |
| PA-BART       | In most horror settings, silence is a ghost.                        |
| Literal Input | Her relationships with family and friends are very difficult (ex.3) |
| Human Ref     | Her relationships with family and friends behave very unusually     |
| COMET         | Her relationships with family and friends serious                   |
| BL-BART       | Her relationships with family and friends have always been strong.  |
| PA-BART       | Her relationships with family and friends are very lonely           |
| Literal Input | The sound hit Frank loud enough to make your ear hurt (ex.6)        |
| Human Ref     | The sound slapped Frank loud enough to make your ear hurt           |
| COMET         | The sound echo Frank loud enough to make your ear sense sound       |
| BL-BART       | The sound of Frank Sinatra is loud enough to make your ear ring.    |
| PA-BART       | The sound clapped loud enough to make your ear cry                  |

- Can capture cases where the ATTRIBUTE is a noun ("is a ghost"), a verb ("yells"), and an adjective ("very lonely")
- Can replace and generate multi-word phrases (e.g. "key"→"a ghost", "hit Frank"→"clapped")
- Can replace multiple segments in a single sentence (last row: "hit Frank" → "clapped", "hurt" → "cry")

# PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation

arXiv preprint:

https://arxiv.org/abs/2209.07752

Dataset + code:

https://github.com/sedrickkeh/PINEAPPLE